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ABSTRACT

Identifying the various type of pills correctly from images is imperative ensuring patient safety and
facilitate more effective patient care, especially in those populations that cannot identify medication
on their own such as older peoples or children. Limited pill datasets are available, so few-shot
learning is key to learn how to automatically recognize pill images. However, prior methods have
been evaluated on publicly available datasets of high-quality, laboratory environment pill images,
which prevents the utility of these models in real-world settings. To address this issue, we introduce an
evaluation framework that benchmarks state-of-the-art few-shot learning algorithms for visual-based
pill detection on a real-world dataset. First, we construct a dataset that contains pill images in a variety
of conditions. We then re-evaluate several state-of-the-art few-shot methods for pill recognition tasks
on our formulated evaluation framework. Finally, we provide a novel and strong baseline comprising
of low-rank approximation techniques and semantic axes augmentation.

Keywords Pill detection · Few-shot object detection · Benchmark dataset

1 Introduction

Preventable medical errors, in particular medication error, are the third leading cause of death in the United States (1; 2;
3). The widespread growth of consuming medications has increased the need for applications that support medication
reconciliation.

Typically, most pill identification approaches can be broken down into two main categories: manual entry based
approaches and computer vision-based approaches. The first group allows the user to manually enter the characteristics
of a pill to identify it. The second one automate this tasks can be considered superior than the first group. The second
group can be broken down even further into deep learning and feature engineering based approaches. To the best of
our knowledge, only the image classification model were available for the pill identification and no detection model a
applied for this task until now.

Artificial intelligence (AI), powered by great advances in machine learning and deep neural networks, has made
substantial progress across many areas of medicine in the past decade (4; 5; 6). Much of the AI work in healthcare
is focused around disease prediction in clinical settings and the use of AI models to prevent medication error is
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unexploited. Several studies show that AI-based applications can help correctly identifying prescription medication,
which is currently a tedious and error-prone task. For instance, data-driven machine learning (ML) is currently a
powerful approach for building accurate and robust pill identifier (7). However, ML algorithms will be prevented from
reaching its full potential without access to sufficient data and the transition from research to clinical practice. In a
real-life pill detection setting, the number of new classes is increasing such as new products, new manufactures, etc.
Very few samples per new classes under noisy image conditions, taken by users. This raise the challenge of learning to
detect pill types with very little examples.

Although the research of few-shot learning is developing rapidly, there is no existing work on the task of pill detection.
The lack of a standard dataset and evaluation protocol has become an obstacle hindering fair comparison between
few-shot algorithms. The above phenomena highlight the need for a common protocol for the evaluation of few-shot
pill detection methods.

In this work, aiming at addressing the aforementioned challenge, we aim to perform a series of experiments that
re-evaluate recent state-of-the-art few-shot image detectors powered by deep neural networks in the task of recognizing
pills from images. The experimental results allow us to benchmark the SOTA models when considered for a real-world
pill detection implementation. We show that most of SOTA approaches reported a high-level of accuracy in this setting.

1.1 Our contributions

To sum up, our contributions are as follows.

• Meanwhile all the existing pill identifier approaches are classification solution, we are the first evaluate
detection task for pill identification.

• We introduce a new evaluation framework of few-shot pill detection and then re-evaluate in this paper state-
of-the-art few-shot learning algorithms for pill detection from images. The benchmarking results serve as
reference for measuring the effusiveness of current few-shot learning algorithms on a real-world setting. Thus
our framework allows for more reliable comparison of few-shot pill detection methods.

• These benchmarks reflect the current state of the art few-shot learning for image-based pill detection task. This
will serve as important baselines for future research. To support reproducing our results and benchmarking
few-shot pill detection methods, we open-source our toolkit called FSPill that contains implementations of a
number of state-of-the-art pill detection methods, data processing utilities, as well as our proposed evaluation
framework.

• We introduce a new few-shot pill detection called LowRank TFA based on the low rank approximation of
semantic layer in RoI module in standard faster-RCNN (8). This method shows its superiority in almost
metrics and settings comparing with other state-of-the-art few-shot detection algorithm.

2 Related Works

2.1 Visual-based Pill Recognition

(9) was one of the first to study pill recognition based on visual characteristics. From there, various works continued to
address the task of pill classification and detection based on a number of approaches. The early attempts carried out
by (9) and temporary researchers focused primarily on the handcrafted features of pill images for pill classification.
The most commonly addressed features were shape, color and imprints on pill surfaces. These features was used by
(9) to construct descriptors that the author proposed to best complements to separate pill categories, and with a K-NN
classifier, achieve 91% accuracy on more than 500 pill types. Other works put a strong emphasis on recognizing pills
based on the pill imprints. (10) studied Modified Stroke Width Transform, Weighted Shape Context to better extract the
imprint features, attaining accuracy of 92 for top 5 rank collected pills for 2000 pill types, respectively. The imprints
are further stress in (11) works, as the authors used a two-step sampling distance sets to better cope with noise in the
extracted imprints, obtaining accuracy of 97.16 for 2500 pill categories.

These early work addressed a data-set with limited number of samples, taken in typically constrains imaging conditions
and not publicly available. They commonly incorporate a prior knowledge of pill domain and hand-crafted features for
the recognition systems.

The more recent works in the field of visual-based pill recognition are constructed on more accessible public large
data-set, such as NIH NLM (12), CURE(13) and incorporate more intricate techniques such as deep convolution neural
networks. (14) addresses geometric and color distorting of pill images using QR-board, and construct a deep neural
network to extract features of detected cropped pill image alongside with a baseline composing the hand crated features,
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witnessing a boost in performance between handcrafted features and feature extracted using convolution networks.
The authors achieved 95.35 top 1 return rate, but on a private data-set of 400 pill types . (15) used Google Le-Net
Inception network on 1000 NIH pill types, obtaining a maximum of 22.86 top 1 accuracy. MobileDeepPill (16) utilized
a multi-stream CNN structure of three streams color, gray and gradient images for pill classification. The model
achieved 52.7 Top-1 accuracy in one-side and 73.7 Top-1 accuracy in two-side pill recognition scheme in NIH-NLM
challenge.

ePill benchmark (17) approach the pill recognition as a fine-grained data-set. They run plain common convolution
backbones along with multi-head metric learning classification and obtained the best performance mean average
precision (MAP@1) of over 90 percent for two-side and over 70 percents for one-side input images.

2.2 Few-Shot Object Detection

Meta learning few-shot detection is further divided into single branch and dual branch few shot detection. Dual branch
methods generally attracts more attention from community (18; 19; 20; 21; 22; 23; 24), whereas single branch methods
are quite new with fewer deviations (25; 26; 27).

Single branch meta-learning simulates a simple, single-branch generic object detection with modified classification
heads that are usually replaced with metric learning heads. RepMet (25) was one the first in this line of works, which
defined the task as learning a distance metric. The extracted region proposals of a faster R-CNN is further used to learn
an embedding space for all classes such given the embedding of a query, the similarity score of it to the representative
vector of the class it belong is the largest. (26) utilize metric learning but with a cosine similarity for distance metric
learning that is claimed to cater for the novel categories and improve their detection scores. Other works in the line of
single branch meta learning tries to reduce learnable parameters, such MetaDet (28) that can learn to generate weights
for a novel class.

Transfer learning is easily more simplistic than meta learning yet achieve a state-of-the-art performance and easily
surpass some meta learning approaches for few-shot detection. TFA (29), one the first work in this line, proposed a
simple two-phase training mechanism composed of training the base classes in the first phase and fine-tuning on the
novel classes in the second phase. After the first phase, the weights of the networks are frozen so that only the weights
from ROI head are open for training during the second stage. Like in meta learning, the common frameworks is the
two-stage faster R-CNN. In FSCE (30), transfer learning is applied with a bit of modification to the classification head
and the cosine similarity is used, which is claimed to be able to compensate for the mismatch between the categories
of the base and novel classes. Many deviates the general transfer learning idea of TFA (29) by a modification to the
loss function, such as (31), which utilized a object concentration loss for handling intra-class agreement, a background
concentration loss for unlabelled instances, and a contrastive loss in the contrastive branch for obtaining the most
representative embeddings. A mechanism to optimize the gradient flow is utilized in DeFRCN (32), which freeze and
unfreeze specific layers at specific times in the training process.

2.3 Few-Shot Learning for Pill Recognition

Despite of the need of pill recognition system with few-shot learning ability, to the best of our knowledge, there is
only one work about this ability of pill recognition algorithm: Multi-Stream deep network for pill classification (13).
However, this work only focuses on the classification task and has complicated multi stages of training and components
reducing the desired flexibility of any fast adaptive few-shot algorithm.

3 Evaluation Framework

3.1 Problem Formulation

Few-shot object detection aims at detecting novel objects with only few annotated instances. Formally, the training
dataset Dtrain = Dbase ∪ Dnovel is separated into two datasets Dbase and Dnovel containing non-overlapping sets of base
categories Cbase and novel categories Cnovel , with Cbase ∩ Cnovel = ∅. Each tuple (Ii, ŷo1 , . . . , ŷoM ) ∈ Dtrain consists
of an image Ii = {o1, . . . , oM} containing M objects o1, . . . , oM and their corresponding labels ŷoi = {coi , boi},
including the category coi and the bounding box boi = {xoi , yoi , woi , hoi} with coordinates (xoi , yoi), width woi , and
height hoi . For the base categories Cbase abundant training data are available in the base dataset Dbase . In contrast, the
novel dataset Dnovel contains only few annotated object instances for each novel category in Cnovel . For the task of
K-shot object detection, there are exactly K annotated object instances available for each category in Cnovel . Therefore
the number of annotated novel object instances |{oj ∈ Ii∀Ii ∈ Dnovel }| = K · |Cnovel | is relatively small. Note that
the number of annotated object instances does not necessarily correspond to the number of images, as one image may
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contain multiple instances. N-way object detection denotes a detector that is designed to detect object instances from
N novel categories, where N ≤ |Cnovel | . Few-shot object detection is therefore often referred to as N-way K-shot
detection. In this track, there are only two sets of data Dbase and Dnovel.

3.2 Image Pill Dataset

Our benchmark will be based on current state VAIPE Pill Identification dataset (VAIPE-PI) from VAIPE project (33)
The VAIPE Pill Identification was built to benefit the research on recognizing distinct types of medicines from mobile
devices in order to ensure patient safety and promote more effective medical care. The original version of VAIPE-PI
includes more than 10000 images, 60000 box-level pill annotations with variety of backgrounds and more than 400
pill categories, however in this few-shot pill detection benchmark, we will discard some poor-quality images and
annotations as well as some pill categories that have too little samples for creating a credible test set.

Characteristic Training set Testing set Total
Number of images 6461 833 7294

Number of pill categories 262 262 262
Instances per category 179.75 23.56 203.2

Image size (pixel x pixel, mean) 3311× 3276 3276× 3469 3300× 3400
Instances per image 7.28 7.4 7.3

Number of boxes annotation 47097 6174 53271
Number of categories per image 5.18 5.76 5.32

Table 1: Common Statistics of VAIPE-P

3.3 Data Splits and Few-shots Construction

To create a training set that captures the imbalanced data between classes scenario of the original dataset and a
credible, balanced test set as well few-shot samples, we used multi-label data stratification (34) implemented in
iterative-stratification package (35) with 20% of samples for test set. Follow TFA (29), to create a balanced few-shot
samples for pill detection, we will sample k boxes of each class (even for novel and base classes) from random images
in the train set.

3.4 Formulation of Evaluation Framework

A fixed test set Dtest will be used. In few-shot pill detection, firstly, a initial model will be trained on Dbase, performance
on test set Dtest \ Cnovel will be reported, where Dtest \ Cnovel can be comprehended as test set Dtest discarding all
annotations having same classes in Cnovel. A random sampling algorithm will sample k (three different settings will be
tested: k ∈ {5, 10, 20}) instances for each class (in total of K ∗ |Cnovel ∪ Cbase| instances), this set called as Dnovel,
after training on this novel set, three performance reports will be conducted on Dtest \ Cnovel, Dtest \ Cbase and Dtest.
Repeat above process 5 times and get the average performance. Follow (29) our performance metric will be COCO-style
which include 4 main metrics: Average Precision (AP), AP Across Scales, Average Recall (AR), AR Across Scales. In
this paper, when comparing different methods, we only report AP in different IoU thresholds: AP at IoU=0.05:0.95, AP
at IoU=0.50 and AP at IoU=0.75 denoted as AP, AP50 and AP75.

4 Baseline Method

We first conducted seris of experiments for different modifications of TFA (29) including original TFA, unfreezing RoI
TFA and unfreezing both RoI and last ResNet block TFA to discover which part in detection model plays key role in
performance increment on few-shot VAIPE-P. The results are expressed in 2. This simple analysis motivates us to find a
strong baseline that compromises between flexibility (ability to fitting to new data points) and catastrophic forgetting.
Motivated by series of works on Adapters from Natural Language Processing (36; 37; 38), we propose a light weight
adapting module composed by multiple rank-1 factors for Faster-RCNN to solve the aforementioned dilemma. We
show mathematical intuition behind module design and superior results of the method over other State-of-The-Art
algorithms in VAIPE-P benchmark.
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Figure 1: Examples of box-level labels

Algorithm 1: Few-Shot Evaluation Framework
Data: The dataset Dtotal, number of random seeds S, base classes Cbase, novel classes Cnovel, all classes

Ctotal = Cbase ∪ Cnovel, Initial weight Wbase, number of base training epochs M , number of novel training
epochs N

Result: test performance
1 Divide Dtotal into Dtrain, Dtest according to data split construction strategy
2 Dbase := Dtrain
3 Dnovel := {∅}
4 for c ∈ Cnovel do
5 Cbase = Discard(Cbase, c) // Discarding all annotations contain class c in Dbase
6 end
7 for seed ∈ {1, 2, ..., S} do
8 for k ∈ {5, 10, 20} do
9 for c ∈ Cnovel ∪ Cbase do

10 Random sample k boxes from set of annotations that contains only class c from Dtrain
11 Extend Dnovel with sampled boxes of class c
12 end
13 end
14 for i ∈ {1, 2, ...,M} do
15 Train{Wbase} with Dbase // Base training the model weight
16 end
17 if Enlarging Network then
18 Wnovel := Extend(Wbase) // Adding more parameters for some methods
19 else
20 Wnovel := Wbase
21 end
22 for i ∈ {1, 2, ..., N} do
23 Train{Wbase} with Dbase // Novel training
24 end
25 for set ∈ {base, novel, total} do
26 Report the performance on Dtest that contain annotations from set only // Evaluating Process
27 end
28 end
29 Average performance from all seeds for the final performance report.

4.1 Low-rank Update

By analyzing the RoI head weight matrices, we discover two last linear layers have low intrinsic ranks despite of their
high dimension output space. This phenomenon is aligned with the general observation in big pre-trained language
model (39). In other words, pre-training on large base dataset of pills encourages RoI head weights to collapse into
small subset of principle semantic axes that linearizes the input features. Based on this observation, we hypothesize that
the most transferable semantic transformation axes are learned in the base training phase, fine-tuning them on small
dataset like novel set can destroy the transferable weights by gradient descent updating. Therefore, there’s no need
to update them in the novel phase of TFA. Meanwhile, in order to make RoI head weights to quickly adapt with new
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Regressor and Classifier RoI heads ResNet block bAP nAP

✓ 0.693 0.492
✓ ✓ 0.642 (-0.05) 0.583 (+0.09)
✓ ✓ ✓ 0.623 (-0.07) 0.571 (+0.08)

Table 2: Performance of TFA methods with different modules to be unfrozen on 15 samples. The results is showing
that adding more parameters in the fine-tuning phase of TFA, especially RoI heads weights, the detection model will
excel on the novel classes however its performance on base classes will be dropped significantly due to catastrophic
forgetting. Nevertheless, more parameters is not equivalent with the increase in novel classes shown by unfreezing last
ResNet backbone and the upper bound of nAP is significant higher than the current one of original TFA.

novel input features, it’s desired to have new free low-rank weights so that it can quickly adapt with novel features. To
generate those desired semantic transformation axes, we use sparse SVD with chosen decomposed rank r ≪ n (the
effect of variety of decomposed rank values is described in table ). With ith trained linear layer of RoI head represented
as affine transformation of input features

y = Wbase,ix+ Bbase,i, (1)

with Wbase,i ∈ Rm×n(m ≥ n) and B ∈ Rn

Wbase,i = Ubase,iSbase,iV
⊤

base,i = Lbase,iR
⊤
base,i, (2)

where Ubase,i ∈ R, Vbase,i are two low-rank matrices with rank r and Sbase is diagonal matrix with singular values
(strength of each semantic axis). Lbase,i = Ubase,i, Rbase,i = Sbase,iV

⊤
base,i are weight matrices with exactly rank r. To

introduce new free weight factor, we use multiple rupdate rank-1 factors (the effect of variety of update rank is described
in table) update represented as dyads ui,jv

⊤
i,j inspired by (40). The red parameters are frozen in second phase of TFA,

while the blue is free to be trained.

y = Lbase,iR
⊤
base,ix︸ ︷︷ ︸

base updating

+

rupdate∑
j=1

ui,jv
⊤
i,jx︸ ︷︷ ︸

novel updating

+Bbase,i (3)

4.2 Orthogonal Regularization

To allow positive knowledge transfer from pre-trained weights and efficient modelling of new novel factors, it’s desired
to have orthogonal constraints on semantic transformation axes. Firstly, if the new semantic transformation axes are
free to be estimated by new data, there’s a possibility that these new axes will have positive correlation with learned
axes making learning new novel factors slower and data-inefficiency. The mutually orthogonal constraint has also been
known as an effective method to reducing learning of new dataset interference with old learned weights (41).

ui,j ⊥ ui,k, ∀j ̸= k and ui,j ⊥ Ubase,i,k ∀j, k (4)

To ensure this orthogonal constraints, we adopt different orthogonal regularizations (42) on principle axes of ith linear
layer’s weights. Here we adopt Mutual Coherence Regularization over Soft Orthogonality Regularization due to its
emprical results (see table for more results on different regulariers).

Lorth (Wi) = λ
∥∥WT

i Wi − I
∥∥
∞ , (5)

where W is concatenation of novel factors and pre-trained factors W = concat(ui,1, · · · , ui,rupdate , Ubase,i) and λ = 100.
Finally, the objective of training is.

Wnovel = argmax
W

Lcls(W, Dnovel) + Lreg(W, Dnovel) +
∑
i

Lorth (Wi) (6)

4.3 Novel Axes Augmentation

Due to data-scarcity scenarios, data augmentation is straight-foward method mitigate the overfitting. Here in low-rank
method, we propose a novel augmentation method that augments latent code along new factor axes. Intuitively, if we
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apply some noise in latent feature space, its inverse image is actually an augmented image. Specifically, in this method,
we only apply Gaussian with dynamic class conditional variance to those features are composed by new novel factors.

yaug = Lbase,iR
⊤
base,ix+

rupdate∑
j=1

ui,jx
aug
i,j + Bbase,i, (7)

where
xaug
i,j ∼ N (v⊤i,jx, σ

2
i,j,c) and c = Wcls(x) (8)

Notes that, v⊤i,jx is a scalar therefore, σ2
i,j,c should be a scalar as well. The variance is estimated by a cache of last m

iterations.

σ2
i,j,c =

1

m

m∑
k=1

(
v⊤i,jxk,c −

1

m

m∑
k=1

v⊤i,jxk,c

)2

, (9)

where xk,c is kth feature in cache that has been classified as c class. Augmenting by estimated variance conditioned on
specific class helps algorithm avoiding meaningless augmentation along axes that are not helpful in classify certain
classes.

5 Experimental and Results

5.1 Experimental setup & Implementation details

Several codebases were used to re-implement State-of-The-Art methodologies due to the fundamental complexity of
each few-shot object detection algorithm. However, to ensure the numerical stability as well as a fair comparison
between detectors, we have upgraded CUDA implementation of FSCE and DeFRCN. For our baseline method, some
hyperparameters are r = 180, rupdate = 15, λ = 100,m = 1000.

5.2 State-of-the-Art Methods

Most of State-of-the-Art few-shot object detectors fall in two main different categories: transfer learning and meta-
learning. Therefore, we will examine some algorithms that characterize well these differences and currently are
state-of-the-art methods on well-established few-shot detection benchmark like MS-COCO (43) or Pascal VOC (44).
They are namely TFA (29), Meta-DETR (45), DeFRCN (46),FSCE (30), FsDetView (47) and a baseline fine-tuning
with Faster-RCNN (48) have been deployed for this task. TFA is a simple method involving in training a Faster-RCNN
detector (8) with modified fine-tuning two-stage scheme. In the first stage, the detector will be trained on Dbase then in
second stage, k samples for each classes (even base classes) will be selected to create Dbalance for slow learning rate
fine-tuning the classifier and regressor of the detector. Being mentioned in section 2.2, GFSD, FSCE and DeFRCN are
just variations of TFA but these changes in algorithm bring substantial increase in performance of the detector. For
meta-learning direction, training a detector with a external re-weighting module in simulated episode scheme is the
main idea among meta-learning few-shot object detection algorithms: Meta-DETR and FsDetView. All the networks
were trained to localize pills using the stochastic gradient descent (SGD) optimizer, except for Meta-DETR which
use Adam optimizer (49) since it involves in using Transformer (50). During the learning phase, the bounding box
regression loss and region-level classification loss were usually jointly minimized, some meta-learning methods can add
another meta-learning loss, commonly cross-entropy. To improve the generalization performance of the detectors while
maintain the fairness evaluation between considering algorithms, a consistent set image augmentation operations for
evaluated algorithms is used for augment the variations of the dataset.

5.3 Benchmarking results

In this section, we compare our proposed method Low-rank update for easy transferable few-shot learning, LowRank
TFA, with the original method TFA (29) and other state-of-the-art few-shot object detection algorithms in different sets
of categories: all classes, base classes and novel classes; different metrics: AP50:95, AP50, AP75 and different number
of novel samples. By fine-tuning only small set of parameters, without doubting, TFA achieves almost the best results
in base categories. However, FSCE (30), one of state-of-the-art methods, achieves substantial performance comparing
with other methods in novel classes with 58.8% AP50:95 in setting of 15 shots but with the cost of low performance in
base categories. Our TFA with unfreezing RoI’s parameters got a decent balance point of performance between base
and novel categories. LowRank TFA pushes this balance point further by achieving 59.7% AP50:95 in novel classes,
the best among considering methods and 66.7% AP50:95, the closest to the original TFA. Surprisingly, the gap in novel
categories performance between Low-rank TFA and others is more significant in lower shots setting (5 shots), LowRank
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TFA got 45.6% AP50:95, 4.9% higher over the second highest method FSCE. With the smaller degradation in base
knowledge, 1.4%, LowRank TFA achieves the best results in all categories even beating TFA. Section 5.4 suggests that
this might be due to the improvements created by Axes Augmentation with Gaussian permutations. Notes that, with
larger number of classes, the all categories performance mostly depends on the performance of base classes.

Table 3: Few-shot object detection performance of several methodologies, Fine-tuning with balanced set (TFA),
Decoupled Faster R-CNN (DeFRCN), Faster-RCNN with Contrastive Proposal Encoding (FSCE), a fine-tuning baseline
(Faster-RCNN+ft) and two meta-learning algorithms Meta-learning with DETR architecture (Meta-DETR), joint feature
embedding module trained by episode training (FsDetView) for 5 and 15 samples per novel class. The best is in bold
and italic respectively.

All Categories Base Categories Novel Categories
Shots Model AP50:95 AP50 AP75 AP50:95 AP50 AP75 AP50:95 AP50 AP75

5

TFA (29) 0.471 0.745 0.601 0.497 0.764 0.636 0.296 0.602 0.345
TFA + RoI unfreezing (ours) 0.462 0.731 0.599 0.473 0.739 0.614 0.377 0.671 0.494

DeFRCN (46) 0.371 0.653 0.48 0.374 0.65 0.484 0.354 0.672 0.445
FSCE (30) 0.431 0.738 0.553 0.434 0.74 0.556 0.407 0.72 0.528

Faster-RCNN + ft 0.305 0.526 0.412 0.307 0.523 0.416 0.289 0.549 0.382
Meta-DETR (45) 0.355 0.529 0.436 0.376 0.552 0.449 0.322 0.494 0.399

LowRank TFA (ours) 0.478 0.756 0.608 0.483 0.756 0.625 0.456 0.752 0.546

15

TFA (29) 0.669 0.941 0.797 0.693 0.96 0.832 0.492 0.798 0.541
TFA + RoI unfreezing (ours) 0.635 0.917 0.768 0.642 0.921 0.78 0.583 0.888 0.688

DeFRCN (46) 0.567 0.849 0.676 0.57 0.846 0.68 0.55 0.868 0.641
FSCE (30) 0.627 0.934 0.749 0.624 0.936 0.752 0.588 0.916 0.724

Faster-RCNN + ft 0.501 0.722 0.608 0.503 0.719 0.612 0.485 0.745 0.578
Meta-DETR (45) 0.551 0.725 0.632 0.572 0.748 0.645 0.518 0.69 0.595

LowRank TFA (ours) 0.66 0.934 0.785 0.667 0.941 0.825 0.597 0.928 0.735

5.4 Ablation Study

Module Analysis We study effectiveness of different modules in LowRank TFA by evaluating each module respec-
tively on top original TFA. In table 4, ablation study shows that the Mutually Orthogonal Regularization plays a key
role in mitigating the catastrophic forgetting effect by increase the bAP by 0.03. Meanwhile, both Low-rank Update and
Axes Augmentation boost the adaption ability on novel set. Low-rank update increase 0.08 nAP over original TFA and
Semantic Axes Augmentation further boost performance by 0.014 nAP. Notes that, original TFA only allow small set of
parameters to be fine-tuned, therefore, the decrease in bAP is acceptable. Nevertheless, the Low-rank Update still has a
strong effect in reducing catastrophic by increasing 0.025 bAP or 0.043 bAP (see table 3) over other much-parameters
methodologies like TFA + RoI unfreezing or FSCE.

Low-rank Update
(r = 180 and rupdate = 15)

Orthogonal Regularization
(Mutual Coherence)

Axes Augmentation
(Gaussian) bAP nAP

0.693 0.492
✓ 0.665 (-0.03) 0.577 (+0.08)
✓ ✓ 0.649 (-0.04) 0.583 (+0.09)
✓ ✓ ✓ 0.667 (-0.03) 0.597 (+0.10)
✓ ✓ 0.633 (-0.06) 0.584 (+0.09)

Table 4: Ablation study of different modules in LowRank TFA

Effect of different Decomposed and Update ranks We study empirically the effect of different values of decomposed
ranks and update ranks on overall performance of LowRank TFA. In general, the value decomposed rank r is computed
before training process by computing stable rank of weight matrices rstable =

∥Wbase,i∥2
F

∥Wbase,i∥2
∞

. The stable rank is a useful
surrogate for the rank because it is largely unaffected by tiny singular values and cannot exceed the actual rank (51).
By testing with different values of decomposed ranks and update ranks, we empirically show that LowRank-TFA is
not sensitive to some extent with these hyper-parameters. A reasonable value for decomposed ranks can be chosen by
stable rank analysis and update rank can be approximated by number of novel classes.
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Figure 2: Sensitivity of different values of update ranks and decomposed ranks versus novel and base categories
performance. The results are from 15 shots setting and the error is computed over 5 random seeds.

6 Conclusions
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